
November, 2005

Create Test Data Easily

Use these classes and a little code to set up more realistic test data

By Tamar E. Granor, technical editor

A while back, I needed a test database of people and contact
information containing more than a handful of records. Since I didn't

want all the records to be for John Smith of 1234 N. Main St., nor did I
want to create 1,000 or so people and 5,000-10,000 contact items

(addresses, phone numbers, etc.) manually, I decided to write code to
handle the task for me.

I wanted my data to be at least somewhat realistic. Thanks to the
Internet, I was able to work with actual names, zip codes, area codes

and so forth. (See the sidebar for guidance on finding this kind of
information and getting it into tables.)

My basic approach was to have tables containing raw data from which
to generate my actual data. For example, I found a website listing the

top girls' names, boys' names and surnames based on census data. I

grabbed 200 of each and massaged them into three tables:
GirlsNames, BoysName, and LastNames.

Similarly, I found a list of US area codes online and transformed it to a
table (AreaCode), so I can use real area codes when generating phone

numbers. I found several other such lists online. In some cases, I
simply made up the raw data—for example, I have a table called

Domains.DBF that contains words to use in creating domain names for
email addresses and URLs.

The one item I couldn't find for free online was city, state and zip code
(CSZ) information. For my purposes, I didn't need a wide range of

locations, so I used the US Postal Service zip-code look-up online to
get the full set of zip codes for five cities of varying sizes and put those

into a table.

I didn't want all the people to have matching sets of contact

information. I wanted some people to have work addresses and others

not to, some to have email addresses and others to have none, and so
forth. To handle this problem, I assigned each possible piece of

information a probability and used VFP's RAND() function to determine
whether a particular record had a particular type of data.

By the time I generated the data I needed, I realized that it wouldn't

be hard to make the process more generic, so it could be adapted to
whatever test data I needed. I ended up with two abstract classes that

structure the process; they can be subclassed for particular data sets.
I also created subclasses of them to handle much of the information

you want to generate for people—it can be used as is or subclassed for
employees, students, and so forth.

The Big Picture

Creating a test data set involves two processes, generating the data
and storing it in tables. It's quite possible for the same data to be

stored in several different ways, so I chose to separate the two
processes. (One of the things this decision enables is testing different

database designs on the same data.)

To handle the two tasks, I created two abstract classes. MakeDataSet

is a template for generating an entire data set and storing the data.
MakeRecord is a template for generating a single record; its driver

method returns an object with the data for that record stored in
properties. Each subclass of MakeDataSet uses a subclass of

MakeRecord.

Creating a Data Set

MakeDataSet (found in MakeData.PRG on this month's Professional

Resource CD) is fairly simple. It's subclassed from Session (so that it
works in a private data session) and has four custom properties:

 cGeneratorClass is the name of the MakeRecord subclass used to
create individual records;

 cGeneratorClassLib is the name of the class library containing
the MakeRecord subclass;

 nSetSize indicates how many records to create;
 oRecordGenerator holds an object reference to the MakeRecord

subclass.

The only built-in methods containing code are Init and Destroy. Init

has just two lines:

This.oRecordGenerator = NEWOBJECT(This.cGeneratorClass, ;
 This.cGeneratorClassLib)
This.OpenTables()

Destroy is even simpler:

This.CloseTables()

The class has six custom methods, most of which are abstract at this
level. Table 1 lists the custom methods.

Table 1. Custom methods—MakeDataSet uses these custom methods to create a set
of test data.

Method Purpose

AfterMakeSet Code to run after all records have been added.

Abstract.

CheckLookup Checks whether a particular value has already been

added to a specified table. If not, adds it. Returns the
primary key of the record.

CloseTables Closes tables opened by this class. Abstract.

MakeSet The main method of this class. Calls on the record
generator class to create a set of records and saves

them.

OpenTables Opens tables needed by this class. Abstract.

SaveRecord Saves a record returned by the record generator into

the appropriate tables. Abstract.

Although the MakeSet method is the driver for the whole process, the
code is pretty simple:

LOCAL nRecord, oRecord

FOR nRecord = 1 TO This.nSetSize
 oRecord = This.oRecordGenerator.GenerateRecord()

 This.SaveRecord(oRecord)
ENDFOR

This.AfterMakeSet()

The code in CheckLookup is a little more complex. It receives five

parameters: the value to look for, the alias of the table, the index to
use for the search, the name of the field in which to put the value if

it's not found, and the name of the primary key field to return.

CheckLookup lets you store look-up data as you store the rest of the

data, as well as create links to look-up data.

PROCEDURE CheckLookup(cValue, cTable, cKey, cField, cPKField)

LOCAL uReturn, cReturnField

IF NOT SEEK(UPPER(cValue), cTable, cKey)
 INSERT INTO (cTable) (&cField) ;
 VALUES (cValue)
ENDIF

cReturnField = cTable + "." + cPKField
uReturn = EVALUATE(cReturnField)

RETURN uReturn

CheckLookup can be called from SaveRecord in a subclass.

Creating a Record

MakeRecord provides basic tools that make writing subclass code to
generate records easier. It includes methods for choosing random

values from a range of number or letters. A number of its methods are
abstract at this level.

MakeRecord has three custom properties:

 oData is a collection holding the list of tables (such as the CSZ
table) to be opened for generating the record. Once the tables

have been opened, the collection also contains the number of
records in each of these tables;

 oMethods is a collection of methods to call in order to generate
the record;

 oRecord is an object reference to the record being created.

Like MakeDataSet, the only built-in methods containing code are Init
and Destroy, but they do a little more work here than in MakeDataSet.

Init seeds VFP's random number generator and then calls several
methods that do the actual work of setting things up:

RAND(-1)

This.oData = CREATEOBJECT("Collection")

This.SetProbabilities()
This.SetMethods()
This.SetData()
This.OpenData()

Destroy cleans up:

This.CloseData()
This.oRecord = .null.

MakeRecord has 11 custom methods, listed in Table 2.

Table 2. Generating records—MakeRecord's custom methods help to generate
random data.

Method Purpose

AddData Adds an item to the oData collection. Pass the name
and alias of the table as parameters.

AddMethod Adds an item to the oMethods collection. Pass the
name of the method as a parameter.

CloseData Closes data tables opened by this class. Uses oData

to determine what to close.

GenerateRecord The driver method for record generation.

GetDataCount Returns the number of records in a specified data
table.

OpenData Opens data tables used by this class. Uses the

information in oData.

RandInt Returns a random integer between specified values.

RandLetter Returns a random letter of the alphabet.

SetData Sets up the list of tables to open. Abstract.

SetMethods Sets up the list of methods to call to generate the
data. Abstract.

SetProbabilities Sets up the probabilities used to decide what data to
generate for a given record. Abstract

SetData is an abstract method to be specified at the subclass level. It's
meant for populating the oData collection with the list of tables used

for generating random values. For example, for a person, you'd

include the tables of boys' names, girls' names and surnames, as well

as the CSZ table and the table of area codes.

AddData is a wrapper for the Add method of the oData collection. It

lets you add items to the collection without worrying about its internal
structure:

PROCEDURE AddData(cTable, cAlias)
LOCAL oDataObject

* Make sure the collection exists
IF VARTYPE(This.oData) <> "O"
 This.oData = CREATEOBJECT("Collection")
ENDIF

* Create the data object
oDataObject = CREATEOBJECT("Empty")
ADDPROPERTY(oDataObject, "Table", m.cTable)
ADDPROPERTY(oDataObject, "Alias", m.cAlias)
ADDPROPERTY(oDataObject, "Count")

* Add the object to the collection,
* using the alias as the key
This.oData.Add(oDataObject, m.cAlias)

RETURN

OpenData loops through the oData collection, opening the specified
tables. For each table it opens, it stores the number of records in the

appropriate member of the oData collection. The code is fairly
straightforward:

LOCAL oTableInfo, lReturn

lReturn = .T.
FOR EACH oTableInfo IN This.oData
 TRY
 cAlias = oTableInfo.Alias
 USE (oTableInfo.Table) ALIAS (m.cAlias) IN 0
 oTableInfo.Count = RECCOUNT(m.cAlias)

 CATCH
 MESSAGEBOX("Cannot open table: " + oTableInfo.Table)
 lReturn = .F.
 ENDTRY
ENDFOR

RETURN lReturn

CloseData loops through the oData collection, closing the tables:

LOCAL oTableInfo

FOR EACH oTableInfo IN This.oData
 cAlias = oTableInfo.Alias
 TRY
 USE IN (m.cAlias)
 This.oData.Remove(oTableInfo)
 CATCH
 ENDTRY
ENDFOR

RETURN

Both OpenData and CloseData use TRY-CATCH to avoid errors if tables

can't be found. Because this class is a developer tool, the error
handling is fairly simple—just a messagebox.

VFP's RAND() function returns values between 0 and 1. (In fact, it
never returns exactly 1.) RandInt and RandLetter convert the value

returned by RAND() into something a little more useful. RandInt

returns an integer between specified bounds:

PROCEDURE RandInt (nMin as Integer, ;
 nMax as Integer) as Integer
* Return a random integer between
* the specified min and max

LOCAL nRand, nResult

IF VARTYPE(nMin)<>"N"
 nMin = 0
ENDIF

IF VARTYPE(nMax)<> "N"
 nMax = 1
ENDIF

nRand = RAND()
nResult = INT((nMax - nMin + 1) * nRand) + nMin

RETURN nResult

RandLetter returns a random uppercase letter:

PROTECTED PROCEDURE RandLetter
* Return a randomly selected letter of the alphabet

LOCAL nRand, cLetter

nRand = This.RandInt(1, 26)
cLetter = CHR(64 + nRand)

RETURN cLetter

Neither of these methods is called by code in MakeRecord; they're

provided to be used in code added to subclasses. I'll show examples
later in the article.

SetProbabilities and SetMethods are both abstract at this level. In
subclasses, SetProbabilities is used to set up probabilities for various

attributes. In most cases, corresponding properties are added in the
subclass and SetProbabilities gives them appropriate values.

SetMethods is provided to populate the oMethods collection with the
list of methods to call in order to generate the actual data. The

methods themselves are added at the subclass level, as well.

AddMethod is a wrapper for the oMethods collection's Add method. The

code is analogous to that in AddData.

GenerateRecord is the main routine for this class. It loops through the

list of methods in the aMethods array, calling each in turn:

LOCAL oMethod, cMethod

This.oRecord = CREATEOBJECT("Empty")

FOR EACH oMethod IN This.oMethods
 cMethod = "This." + oMethod.Name
 &cMethod
ENDFOR

RETURN This.oRecord

GenerateRecord creates an empty object; it's up to the methods it

calls to add appropriate properties to hold the data.

Generating People

A fairly common need is generating people and their addresses, phone

numbers, emails, and so forth. So the first subclasses of MakeDataSet
and MakeRecord perform this task. I'll look at the MakeRecord

subclass first, then show how it's used by the MakeDataSet subclass.
Both classes are contained in MakePeople.PRG, which is included on

this month's PRD.

The MakeRecord subclass is called MakePerson. It has a number of

additional custom properties, each of which controls either the range
of data for a particular item or the probability of an item. They're listed

in Table 3. The array properties are filled in the SetProbabilities
method.

Table 3. Controlling record generation—These custom properties of MakePerson
determine the values permitted or the likelihood of a record having a particular data
value.

Property Purpose

aAddress[1,2] The probability that the person has each type of
address. Column 1 is the type. Column 2 is the

probability.

aEmails[1,2] The probability that the person has each type of

email. Column 1 is the type. Column 2 is the
probability.

aPhones[1,3] The probability that the person has each type of

phone number. Column 1 is the type. Column 2 is
the location. Column 3 is the probability.

aWeb[1,2] The probability that the person has each type of
web address. Column 1 is the type. Column 2 is

the probability.

dOldest The earliest permitted birth date.

dYoungest The last permitted birth date.

nDates The number of days between dOldest and

dYoungest.

nDomainWordMax The maximum number of words to use in creating

a domain name.

nHasLetter The probability that a street address includes a
letter after the digits.

nHighHouseDigits The maximum number of digits in a street
address.

nLowHouseDigits The minimum number of digits in a street address.

nMale The probability that a record should be male.

To create realistic people and contact data, I used the tables described
at the beginning of this article. These provide a group of names,

streets, area codes and so forth. They're all listed in the SetData

method, which uses the AddData method to populate the oData

collection:

PROCEDURE SetData

WITH This
 .AddData("LastNames", "LastNames")
 .AddData("BoysNames", "BoysNames")
 .AddData("GirlsNames", "GirlsNames")
 .AddData("StreetNames", "Streets")
 .AddData("CSZ", "CSZ")
 .AddData("AreaCode", "AreaCode")
 .AddData("Domains", "Domains")
 .AddData("TLDs", "TLDs")
ENDWITH

This.nDates = This.dYoungest - This.dOldest + 1

RETURN

RETURN

Although the list of possible birth dates isn't stored in a table, SetData

uses the end dates provided to compute the number of birth dates
available.

SetProbabilities fills in the likelihood that the person has various types

of data. For example, it sets the chance of a home (personal) address
to 90%, but there's only a 40% chance of a work (business) address

and a 20% change of a school address.

Only a portion of the method is shown here. The rest is analogous,

populating the rest of the aPhones array and resizing and populating
the aEmails and aWeb arrays.

WITH This
 DIMENSION .aAddresses[3,2]
 .aAddresses[1,1] = "Personal"
 .aAddresses[1,2] = .9
 .aAddresses[2,1] = "Business"
 .aAddresses[2,2] = .4
 .aAddresses[3,1] = "School"
 .aAddresses[3,2] = .2

 DIMENSION .aPhones[8,3]
 .aPhones[1,1] = "Personal"
 .aPhones[1,2] = "Voice"
 .aPhones[1,3] = .9
 .aPhones[2,1] = "Personal"
 .aPhones[2,2] = "Fax"
 .aPhones[2,3] = .3

SetMethods lists the methods to be called in the order in which they

should be called, calling AddMethod to populate the oMethods
collection:

WITH This
 .AddMethod("GetName")
 .AddMethod("GetBirthdate")
 .AddMethod("GetAddresses")
 .AddMethod("GetPhones")
 .AddMethod("GetEmails")
 .AddMethod("GetURLs")
 .AddMethod("GetSSN")
ENDWITH

RETURN

The real work is done in all the Getxxx methods listed in SetMethods.
Each one creates one type of data. GetBirthdate is the simplest, but

demonstrates most of the basic ideas:

LOCAL nRand

nRand = This.RandInt(1, This.nDates)
ADDPROPERTY(This.oRecord, "dBirthdate", ;
 This.dOldest + nRand - 1)

RETURN

RandInt returns a number between 1 and the number of days
specified. The second line adds a property called dBirthdate to the

record and sets its value to the specified date (the day nRand-1 days
after the starting date).

GetName generates a first name and last name and also sets the
record's gender. It uses the BoysNames, GirlsNames and LastNames

tables. The method calls RandInt to return a number between 1 and
the number of surnames. It uses that value as a record number and

grabs the surname at that position. Next, it generates a random
number and checks it against the probability that the person is male.

Depending on the result of that check, either a boy's name or a girl's
name is chosen, using the same approach as for the surname. cFirst

and cLast properties are added and set to the names chosen. In
addition, a cGender property is added and set to either "M" or "F".

LOCAL nRec, nRand

* Choose a last name
nRec = This.RandInt(1, This.GetDataCount("LastNames"))
GO nRec IN LastNames
ADDPROPERTY(This.oRecord, "cLast", ;

 ALLTRIM(LastNames.cName))

* Determine male or female and get first name
nRand = RAND()
IF nRand <= This.nMale
 nRec = This.RandInt(1, This.GetDataCount("BoysNames"))
 GO nRec IN BoysNames
 ADDPROPERTY(This.oRecord, "cFirst", ;
 ALLTRIM(BoysNames.cName))
 ADDPROPERTY(This.oRecord, "cGender", "M")
ELSE
 nRec = This.RandInt(1, This.GetDataCount("GirlsNames"))
 GO nRec IN GirlsNames
 ADDPROPERTY(This.oRecord, "cFirst", ;
 ALLTRIM(GirlsNames.cName))
 ADDPROPERTY(This.oRecord, "cGender", "F")
ENDIF

RETURN

Because each person can have multiple addresses, phone numbers,
email addresses and websites, the methods that generate that

information all work similarly. Each first adds a property to the person

record pointing to an empty collection. Then it loops through the
corresponding probability array, and for each item, uses RAND() to

determine whether this person should have an item of the specified
type. If so, the method creates an empty object to hold the new item.

Then, it uses appropriate techniques (calls to RandInt andRandLetter,
calls to RAND(), look-ups in the right tables) to create the data for that

item and add properties to the new object to hold the data. Finally, it
adds the newly created object to the collection. GetAddresses is

typical:

LOCAL nAddr, nRand, oAddress
LOCAL nHouseNumber, cHouseLetter, nHigh, nLow

ADDPROPERTY(This.oRecord, "oAddresses", ;
 CREATEOBJECT("Collection"))

FOR nAddr = 1 TO ALEN(This.aAddresses, 1)
 nRand = RAND()
 IF nRand <= This.aAddresses[m.nAddr, 2]
 * Generate this one
 oAddress = CREATEOBJECT("Empty")
 ADDPROPERTY(oAddress,"cType", ;
 This.aAddresses[m.nAddr, 1])

 * Get a house number. First, figure out how
 * many digits, then choose a random value with
 * that many digits. This approach is used
 * because choosing randomly over the whole range
 * results in too many longer values.

 nRand = This.RandInt(This.nLowHouseDigits, ;
 This.nHighHouseDigits)
 nLow = 10^(nRand-1)
 nHigh = 10^nRand - 1
 nHouseNumber = This.RandInt(m.nLow, m.nHigh)
 * Check whether to add a letter
 nRand = RAND()
 IF nRand <= This.nHasLetter
 cHouseLetter = This.RandLetter()
 ELSE
 cHouseLetter = ""
 ENDIF
 cHouseNumber = TRANSFORM(m.nHouseNumber) + ;
 m.cHouseLetter

 * Get a street
 nRand = This.RandInt(1, This.GetDataCount("Streets"))
 GO nRand IN Streets
 cStreet = Streets.cDir -(" " + Streets.cStreet) - ;
 (" " + Streets.cType)

 * Get a city, state, zip combination
 nRand = This.RandInt(1, This.GetDataCount("CSZ"))
 GO nRand IN CSZ

 ADDPROPERTY(oAddress,"Street", m.cHouseNumber + ;
 " " + ALLTRIM(m.cStreet))
 ADDPROPERTY(oAddress,"City", CSZ.cCity)
 ADDPROPERTY(oAddress,"State", CSZ.cState)
 ADDPROPERTY(oAddress,"Zip", CSZ.cZip)

 * Now add the new address to the collection
 This.oRecord.oAddresses.Add(m.oAddress)
 ENDIF
ENDFOR

RETURN

MakePerson also includes GetPhones, GetEmails and GetURLs. Email

addresses and URLs have two components in common, the domain
name and the top-level domain (COM, EDU, ORG, etc.). So the class

includes GetDomainName and GetTLD methods, which generate those
randomly.

The final method in MakePerson is GetSSN, used to generate a social
security number at random. The code follows the basic rules for the

structure of a US social security number (which I found on the web). It

also demonstrates the approach to use for items that should be unique
in the data set, but can't be specified as AutoIncrement fields. GetSSN

maintains a cursor of the social security numbers generated so far.
The code is set up so that the calling object (a subclass of

MakeDataSet) could create that cursor before calling on MakePerson;

doing so allows MakePerson to add data to an existing test set, rather

than only create new test sets. Here's the code for GetSSN:

LOCAL cSSN, nDigit1, nDigit2, nDigit3, nLast, lNewNum

IF NOT USED("__SSNs")
 CREATE CURSOR __SSNs (cSSN C(9))
 INDEX on cSSN TAG cSSN
ENDIF

lNewNum = .F.
DO WHILE NOT lNewNum
 * First set of three: 001 to 772
 nDigit1 = This.RandInt(0, 7) && First digit not above 7
 IF m.nDigit1 = 7
 nDigit2 = This.RandInt(0, 7)
 IF m.nDigit2 = 7
 nDigit3 = This.RandInt(0, 2)
 ELSE
 nDigit3 = This.RandInt(0, 9)
 ENDIF
 ELSE
 nDigit2 = This.RandInt(0, 9)
 IF m.nDigit1 = 0 AND nDigit2 = 0
 nDigit3 = This.RandInt(1, 9)
 ELSE
 nDigit3 = This.RandInt(0, 9)
 ENDIF
 ENDIF

 cSSN = TRANSFORM(m.nDigit1) + ;
 TRANSFORM(m.nDigit2) + TRANSFORM(m.nDigit3)

 * Second set of two: 01 to 99
 nMiddle= This.RandInt(1, 99)
 cSSN = m.cSSN + PADL(m.nMiddle,2,"0")

 * Third set of four: 0001 to 9999
 nLast = This.RandInt(1, 9999)
 cSSN = m.cSSN + PADL(m.nLast, 4, "0")

 * Is it unique?
 IF NOT SEEK(m.cSSN, "__SSNs", "cSSN")
 lNewNum = .T.
 INSERT INTO __SSNs VALUES (m.cSSN)
 ENDIF
ENDDO

ADDPROPERTY(This.oRecord, "cSSN", m.cSSN)

RETURN

To generate additional data items, create the appropriate Getxxx
routine and add the method call to the aMethods array.

Generating a Set of People

To create a set of people, I subclassed MakeDataSet and set nSetSize
to 5000, cGeneratorClass to "MakePerson" and cGeneratorClassLib to

"MakePeople.PRG". I had to put code in only two methods, OpenTables
and SaveRecord.

For OpenTables, I chose to take the "open or create" approach. That
is, for each table, the method checks whether it already exists. If so, it

opens the table. If not, the method creates the table with the desired

structure.

Depending on your needs, you might choose to always create new

tables or to always open existing tables. While testing my code, I used
a version of OpenTables that created cursors, so that they'd disappear

when I was done. In some cases, you might choose to clone all the
tables from an existing database—that could provide an easy way to

set up a test data set for an application.

Here's a portion of the code in OpenTables. Note that if the Person

table already exists, the code creates the cursor of social security
numbers and fills it with existing values to ensure the new values are

unique.

IF FILE("Person")
 USE Person IN 0
 * Grab SS#'s already in use
 SELECT cSSN FROM Person INTO CURSOR __SSNs READWRITE
 INDEX on cSSN TAG cSSN
ELSE
 CREATE TABLE Person (iID I AUTOINC UNIQUE, ;
 cFirst C(15), cLast C(30), cGender C(1), ;
 cSSN C(9), dBirth D)
ENDIF

IF FILE("Address")
 USE Address IN 0
ELSE
 CREATE TABLE Address (iID I AUTOINC UNIQUE, ;
 iPersonFK I, iLocFK I, cStreet c(60), ;
 cCity C(20), cState C(2), cZip C(9))
ENDIF

SaveRecord is the most interesting method in this subclass. In this
method, you can take the generated data and store it in whatever

form meets your needs. The database that got me started on this code
was designed specifically to test a new approach to storing contact

information; it puts all contact items into a single table, and maintains

a pair of look-up tables to indicate the item type and location. The

version included with this article uses a more traditional approach,
with separate Address, Phone, Email and Web tables. It also creates a

look-up table for location values ("Business", "Personal", "School",
etc.) and uses the CheckLookup method to handle those values.

PROCEDURE SaveRecord(oRecord)

LOCAL iPerson, iLoc

WITH oRecord
 INSERT INTO Person (cFirst, cLast, cGender, ;
 cSSN, dBirth) ;
 VALUES (.cFirst, .cLast, .cGender, ;
 .cSSN, .dBirthdate)
 iPerson = Person.iID

 FOR EACH oAddress IN .oAddresses
 WITH oAddress
 iLoc = This.CheckLookup(.cType, "Location", ;
 "cLocation", "cLocation")
 INSERT INTO Address (iPersonFK, iLocFK, cStreet, ;
 cCity, cState, cZip) ;
 VALUES (m.iPerson, m.iLoc, .Street, .City, ;
 .State, .Zip)
 ENDWITH
 ENDFOR

 FOR EACH oPhone IN .oPhones
 WITH oPhone
 iLoc = This.CheckLookup(.cLoc, "Location", ;
 "cLocation", "cLocation")
 INSERT INTO Phone (iPersonFK, iLocFK, ;
 cType, cNumber) ;
 VALUES (m.iPerson, m.iLoc, .cType, ;
 ALLTRIM(.AreaCode) + ALLTRIM(.Number))
 ENDWITH
 ENDFOR

 FOR EACH oEmail IN .oEmails
 WITH oEmail
 iLoc = This.CheckLookup(.cType, "Location", ;
 "cLocation", "cLocation")
 INSERT INTO Email (iPersonFK, iLocFK, mEmail) ;
 VALUES (m.iPerson, m.iLoc, .Email)
 ENDWITH
 ENDFOR

 FOR EACH oURL IN .oWeb
 WITH oURL
 iLoc = This.CheckLookup(.cType, "Location", ;
 "cLocation", "cLocation")
 INSERT INTO URL (iPersonFK, iLocFK, mURL) ;
 VALUES (m.iPerson, m.iLoc, .URL)

 ENDWITH
 ENDFOR

ENDWITH

RETURN

By changing the code in OpenTables and SaveRecord, you could even

store the same data into two different sets of tables, which would

enable you to check which structure works better for a particular
application.

Taking it farther

MakePerson and MakePersonSet handle the basic information you want

in a person record. I created two subclasses of each. MakeStudent and
MakeStudentSet (in MakeStudent.PRG on this month's PRD) simply

extend the person structure to include a unique 8-digit student
number and limit the birthdates to a reasonable range for students. In

addition, MakeStudentSet saves the data in cursors, demonstrating the

way to test this code without leaving traces.

MakeEmployee and MakeEmployeeSet (in MakeEmp.PRG on this

month's PRD) create a single table containing a multi-level hierarchy.
They generate data for a table called Emp with these fields:

 iID – primary key
 cFirst – first name

 cLast – last name
 iSuper – primary key of employee's supervisor

MakeEmployee is very simple. It sets nMale to .5, indicating that

approximately half the employees should be male and half female.
SetMethods indicates that GetName is the only method to call.

In MakeEmployeeSet, OpenTables and SaveRecord are essentially cut-
down versions of their counterparts in MakePerson. The really

interesting code in this class is in AfterMakeSet.

Because the iSuper field for each record has to be drawn from the set
of primary keys, that field can't be filled in until the entire set has

been created. The class has two additional properties,
nMinSubordinates and nMaxSubordinates, that determine the

minimum and maximum number of direct subordinates for each
supervisor.

AfterMakeSet collects all the primary keys and chooses one at random

to be the top-level boss. That person's ID is stored in a cursor call
AddEmps.

The major processing loop goes through AddEmps. For each record, it
calls RandInt to choose the number of direct subordinates for this

employee and then loops through, choosing employees at random to
be this employee's subordinates. Each one is added to AddEmps. The

loop keeps track of the number of employees processed and stops
when it runs out of people to assign.

LOCAL nCount, nRec, nProcessed, nBoss, nNumEmps, nEmpID
LOCAL nEmp, lGotOne, nCount, nHoldRec

* Set up a cursor with all the record numbers
SELECT RECNO() AS nRecNO, iID, .F. AS lUsed ;
 FROM Employee ;
 INTO CURSOR EmpRecs READWRITE

SELECT EmpRecs
INDEX ON nRecNo TAG nRecNo
nCount = RECCOUNT("Employee")
nProcessed = 0
nBoss = 0

* Set up a cursor to handle employees yet to process
CREATE CURSOR AddEmps (iID I)

* Choose the boss
nRec = This.oRecordGenerator.RandInt(1, nCount)
SEEK nRec IN EmpRecs
REPLACE lUsed WITH .T. IN EmpRecs
INSERT INTO AddEmps VALUES (EmpRecs.iID)
nProcessed = 1

DO WHILE nProcessed<nCount AND NOT EOF("AddEmps")
 * Process the current record in AddEmps
 nBoss = AddEmps.iID
 nHoldRec = RECNO("AddEmps")

 * Find out how many employees for this boss
 nNumEmps = This.oRecordGenerator.RandInt(;
 This.nMinSubordinates, This.nMaxSubordinates)
 nNumEmps = MIN(nNumEmps, nCount-nProcessed)

 FOR nEmp = 1 TO nNumEmps
 * Choose an unused record
 lGotOne = .F.
 DO WHILE NOT lGotOne
 nRec = This.oRecordGenerator.RandInt(1, nCount)
 SEEK nRec IN EmpRecs
 IF NOT EmpRecs.lUsed
 lGotOne = .T.

 REPLACE lUsed WITH .T. IN EmpRecs
 nEmpId = EmpRecs.iID
 ENDIF
 ENDDO

 * Process it
 SEEK nEmpID ORDER iID IN Employee
 REPLACE iSuper WITH nBoss IN Employee
 INSERT INTO AddEmps VALUES (nEmpID)
 nProcessed = nProcessed + 1
 ENDFOR

 GO (nHoldRec) IN AddEmps
 SKIP
ENDDO

RETURN

Putting it all together

To use any of the MakeDataSet subclasses, simply instantiate it, set
nSetSize, and call the MakeSet method. For example:

oMakeSet = NewObject("MakeEmployeeSet", "MakeEmp.PRG")
oMakeSet.nSetSize = 1000
oMakeSet.MakeSet()

When it's done, you'll have a test set that's ready to go. I've found

that with this code available, I'm far more likely to create proper test
data instead of testing on just a few records with ridiculous values.

The Professional Resource CD for this issue includes all of the classes
described here, as well as my tables of data for names, addresses,

phone numbers, emails and URLs.

Sidebar: Creating Raw Data Tables

Populating the raw data files took a little work. To find them, I used

Google to find sites offering the information I wanted in any format
that would be easy to work with.

The male names, female names and surnames came from the US
census website. They have long lists of names from the 1990 census

at http://www.census.gov/genealogy/names/names_files.html. I

highlighted the first 200 in each list and copied them to a text file.
Then I used VFP's text processing functions to turn each text file

(which contained additional data) into a table with only the names
listed.

I found a list of street names for Anchorage, Alaska available in a

downloadable Excel workbook at
http://webapps1.muni.org/pdpw/addressing/StreetResults.cfm.

Converting the spreadsheet to a table was a piece of cake and the
nearly 5000 entries seemed to be plenty for my purposes.

As noted in the main article, the CSZ table, containing city, state and
zip code combinations, has only a little data in it. (Complete city,

state, zip data is available from a number of companies, but I couldn't
find it for free.) I collected my data by using the US Postal Service's

zip code lookup website. One of the options is to look up zip codes by
city (http://zip4.usps.com/zip4/citytown_zip.jsp). I used that choice

for five cities. For each, I highlighted the results, saved them to a text
file and then used VFP code to put the data I wanted into a table.

For area codes, I found a variety of information online. I downloaded
an Access database containing the list of area codes in use and

extracted the data I needed from it. I can no longer find the original

source, but http://www.nanpa.com/area_codes/ offers a similar
(though more complex) table. A search of Google for "area codes"

turns up several sites with area code information in text form.

Ten years ago, creating these tables would have been a labor-

intensive process. With the Internet plus a little VFP code, I was able
to put these tables together fairly quickly.

http://webapps1.muni.org/pdpw/addressing/StreetResults.cfm
http://www.nanpa.com/area_codes/

